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We investigate the complete system of differential equations describing the dyna- 
mics of a synchronous motor with two windings on the rotor, under the assumption 

that the moment of inertia of the rotor is sufficiently large. We consider two do- 
mains of variation of the variable s defining the rotor slippage. In one of them 
s have finite values, while in the other domain s are small. In the first case we 
ihvestigate the solutions of the complete system of equations periodic in 6, and in 

the second case we study the periodic solutions which embrace the state of equi- 

librium. The conditions of stability of the solutions obtained are given. The sta- 

ble periodic solutions correspond in the first case to the synchronous modes of the 

synchronous motor, and in the second case to the oscillations of the rotor relative 
to the synchronous rate of rotation. 

When the transient processes in a synchronous motor are investigated using the 
complete system of differential equations obtained by Gorev in Cl], the following 

approaches are usually employed : (1) only the equation of the mechanical motion 

of the rotor is considered p- 71; (2) only the electrical equations are considered, 
i. e. the transient processes are considered at a constant angular velocity of rota- 
tion of the rotor ; (3) the complete system of equations is linearized near the stea- 

dy state motion and small oscillations of the system are studied ; (4) the complete 

system of equations is integrated numerically Cl. 81. However, the dynamics ofa 
synchronous motor as such, has not been investigated to any great extent. 

1. The equation, of dynamic8 and statament of the problem. 
The equations of dynamics of a synchronous motor working in parallel with a network 
of infinite power, in the driving mode, assume the following form [l] after introducing 
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the dimensionless variables, the parameters and time T co,t : 

x’ + Es + 1 (1 - s) y + ylu’ + yz (1 - s) 72 :-- -sin 9 

- 11 - s) X + ?Ly’ + gy - yi (1 - s) u + y2u’ =~: -cos 8 

y$z’ + a,u’ $m &zL ~~ Yj, y2y’ + a& + (32u == 0 

0’ = s, s’ ~ M, {T, - [y,xv - ylyu - (1 - A) WI} 

(1.1) 

Here 8 is the angle between the transverse axis of the rotor and the rotating emf (elec- 

tromotive force) vector of the external network ; x, y, u and v are the reduced long- 
itudinal and transverse stator and rotor currents ; s is the rotor slippage ; a1 is the fre- 

quency of the external network ; L, and L, are the coefficients of self-induction in the 
longitudinal and transverse axes of the motor ; L, and L, are the coefficients of self- 
induction of the rotor windings ; M, and My are the coefficients of mutual induction 
of the stator phases with the rotor windings ; K, R, and R5 denote the active resistan- 
ces of the stator phases and the rotor windings ; E, is the amplitude of the external net- 
work potential ; E, is the excitation emf; J is the moment of inertia of the rotor and 

T is the moment of the external mechanical forces applied to the rotor shaft. 

When the synchronous motor is in its operational (synchronous) mode, the rotor slippage 
s -= U . Nevertheless, the variable s may assume any value during the transient modes, 

e. g. starting the motor or sharp variations of the load, Let the time constant of the me- 

chanical motion be much greater than the greatest time constant of the electrical loops 
by virtue of the fact that the moment of inertia of the rotor J is sufficiently large, i.e. 

the parameter izI,, G E < 1 (this implies another simultaneous assumption that the 

greatest time constant of the electrical loops is of the order of unity). Using the above 
assumption, we study the dynamics of a synchronous motor by means of asymptotic 
methods. for the finite values of s and for small S. 

2. Inveatigatfon of the dynamic8 in the domain of finfte value8 
of Y. Let us first consider the dynamics of a synchronous motor in the domain of asyn- 
chronous modes when the rotor slippage s, is different from zero and is not small 

(Is I - 1). The system (1.1) can be written in the form 

t)’ = S, 2’ -= A (S) 2 + U (8), S’ = EF (Z) (Z = CO1 (5, y. 1(. 0)) c2.1) 

where z and 8 are rapidly varying variables and, physically speaking, (1 is a rapidly 
rotating phase. The eigenvalues of the matrix A (s) have negative real parts when 
a, - yrz > U and Aa, - yz2 > 0 and this takes place at all times since the left 
hand sides of these inequalities represent the longitudinal and transverse leakage coef- 

ficients of the motor windings [ 11. 
We shall seek a solution of (2.1) which is near to the steady state solution of the dege- 

nerate system obtained from (2.1) for F --- 0. Denoting the solution of the degenerate 
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system by z, (s, 6) we perform the following change of variables in (2.1): 

2 = z0 (s, 0) + EjGS 4 EC (0) 

2s (s, 8) = {X (a, O), y (S, O), = (.% Q), ZJ ts, @)I 

(2.2) 

where 5 is a new variable and the vector function z” (8) will be defined below. Then 
the following expansion of the function F (2) near the solution zO (s, 8) holds : 

4s) - F(s&, 8)) f E( r/q + z”(e)) a; (ZQ) + F?( * * .)= 

(F(s)) + f;*(s, 0) + E(JQ + qe))(* (s) -i_ 

8g(s, 0)) + &a( . . . ) 

where the mean values of F* (s, 8) and BP (s, f3) f dz averaged over the variable 

8 are zero. 
Let su be the root of the equation (F (SO)> = 0. We perform the following substi- 

tution [9] : B 

s = so + EW -t : ’ F*(s,, O)d0 + &SO 
s (2.3) 
0, 

where ui is a new variable and s’ will be defined below. Then the system (2.1) assumes 

the form n 

Let us assume that d (F (sJ) / ds # 0. We choose the vector function z0 (0) = 

(z”) -t_ z3* (0) (the mean value of zO* (Of averaged over 8,is zero) as a particular 
solution of the inhomogeneous system of linear differential equations with constant coef- 
ficients d:” 

- = rl(S&” - 
dH 

Z$qSO, ~)~*(,s~, f3) 

and sC as the solution of the linear equation 

da a0 &F> A- - (z”) + (W(s,)) -- 0 n’s az 

where \’ F%’ (so)! is the mean value of 
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w (.s(j, 8) = +- g \P* (Sot 8) cl0 -+ 8g zc’* (e) - & F* \ F* (S,), 0) d0 
c 

averaged over 9 . Then th$ system (2.3) is reduced to 

8’ = SO + 0 (0, w, 5, E) + &@I” (e, W, 5, E) (2.5) 

w-=pd(F) I - w + EX (0, w, g, e) + 8X” (8, w, 5. E) 
Qs 

Y (0, w, 5, F) -7 l/t: (. . .) 
Clearly the mean values of the functions @* (0, W, j, 8) and X* (0, w, 5, E) 

averaged over 8 are equal to zero. Thus the system (2.5) satisfies the conditions of the 

theorems 15.1,15.3 and 15.4 of Hale [ 10~. According to these theorems the system 
(2.1) has a one-dimensional integral manifold 

s = so -i_ FS‘ -t- + j F* (so, 0) df3 -I- El (0, F) (2.6) 

5 -:= zo (sg, 8) -j- c.zp ;;,) - j- E f&f (0, E) 

f(Q, F) -0. g(Q, F)+O as E--t0 

The integral manifold (2.6) is a 0 -periodic solution of (1.1) near the steady State solu- 

tion s = SO, z = ,a0 (so, 0) of the degenerate system. The periodic solution is stable 

when d (F (so)) I ds ( 0 and is a saddle when d (F (~a)) i ds > 0 
For the initial system (1.1) the solution zO (So, A) s {Zoj (st,. 0)) has the form 

S”j (30, Q> = ‘,- ‘I’ - {sin 6 fa (nIj + bzj) i_ b (blj - Clsj)] -I- 
(LJ i_ h” 

-13;(W 

co.3 0 [a (b,i - n&-b (al,/ -I- h,j)]}-( -- 1)’ ‘rj 1(u) , j-1,2,3,4 

CT, z Re A (p), b L== Im A (p), CZ&j = Re.Akj(p), b,j ;- IIDA~<j fp) 

(p ‘;= is, i = I/-1) 

Here A (p) is the determinant of the system (1. I), A rrj (p) are the minors of :3 (P) 

and F (zJ = F (s,, 0) :-- T,, - uI (so) $ - 0, (s,,) - )I? (s,)cos 3) - 

b, (so) x sin 28 - qcl (S,~)COS c) - yc2 (s,,)Sin 0 
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where s,, is the root of the equation 

(F (s,,)) = T,, - a, (so)r2 - 6, (s,,) = 0 

al tso) = _ "f?E (1 -4 EZi- h2(1 --so)2 
p1" [4" + h(1 - so)"p 
1 

bl(%) = - %(a2+g) (72 [(all i- b21) ht + b2,) + (h, - ~21) (bl, - n,,)] - 

Yl [(al2 + b,,)(al, + 62,) + (b,, - a,,)(bl, - ~1 - 

(I - A) [(art + b2dal2 + b,,) + (bl, - a,,)(bl, - a,,)l} 

As an example, let us consider a synchronous motor with the parameters aI = ‘13, 
a2 = V3, b = ‘Oi,, bz -= V,, y1 = 0.3, ~2 = 0.1, h = 0.1, n = “‘1s and T, = 0.3 and 

follow the behavior of the periodic solutions relative to the parameter E, characterizing 

the ohmic losses in the stator circuit. When E = 0 the system (1.1) has two 8 -periodic 

solutions, the stable solution (asynchronous mode) so1 = 0.4 (d (F (sol)) / ds = -0.72) 

and the saddle so2 = 21.454 (d <F (soz)> i ds = 0.0134). As g increases, the coordinr 

ates soi of the periodic solutions also increase, at E = 0.04 the saddle-type limit cycle 

(so2 = 24.525) begins to decrease with respect to s and from 6 = 0.71 (soI = U.YU578, 

so2 = 5.6955) both cycles again begin to rise without converging. 

3. Investigation of the dynamics in the domain of small 
8 (I s 1 < e < 1). Let us now consider the dynamics of a synchronous motor in the 

domain of small values of the slippage s (I s 1 < E < 1). We pass to the new varia- 

ble 6, where s = p~5 and p = I,‘< introducing “slow” time t’ = PT. Then the 

system (1.1) becomes 

IKE’ + gx + ?L (1 - ~0) Y + ytpz~’ + y2 (1 - pa) u = --sin 8 (3.1) 

-(l - pa) z + apLy* + gy - y1 (1 - po) z.! + y2pv’ = -cos 8 

yrp”’ + a,pn’ + P1u = rl, Y&Y’ + a,@ + B2v = 0 

0’ = G, B’ = T, - [y,xv - ylyu - (1 - A) lcyl 

Here and in what follows, the dot denotes differentiation with respect to the slow time 

t’. The system (3.1) represents a system with a small parameter accompanying the de- 
rivative. Performing the following change of variables : 

XQ = 5 
C 

-h.+, Y'zY-LL 
a+tz' 

u"lu_L 
91 ’ 

v- = v (3.2) 

we can reduce (3.1) to the form 

pa’ = A (0, o, 2, p) 2 + pF (0, o, p) (3.3) 

where 

2 GE co1 {X0, y”, UO, v@}, b == Ylr 1 Bl 

c = -g sin 8 + ?L cos 8 - Ab, d = -sin 13 - E cos 0 + EJ 



596 

H (0, 0) = ‘/,02 - G (e), G(0) = (T, - a, (0) q2 - b, (0)) e - 
‘i2b2 (0) sin 20 + ‘lzb, (0) cos 28 - w (0)sin 8 + qc, (O)COS 8 

1 = &$g ) 
1 

In = h= 

The degenerate system corresponding to (3.3) is conservative and the eigenvalues of 

the matrix A (0) have negative real parts . Thus, the system (3.3) satisfies the condi- 
tions of the theorem given in [ 111. According to this theorem the system (3.3) has a 

periodic solution, if the system 

6. = arI(e5) . a~ (8.5) 
a5 ’ B = - - - /A [ Q2 (f3,O) A-l (0) F (0, a)] ae 

(3.4) 

also has a periodic solution. tiere 

Qz (0,~)) A-l (0) F (CJ, a) = hs {b2E (t” - 3@? + 3h2E2 - A”) + 

+ (h -t E”) r$ (h2 + E”) -t_ g (1 -I- E”)] + E (1 - h)2 (F - A) -t 

_.& cos 20 [g (t4 - 3hp + 3h2cL - h3) + g (h - 3E2 + 3hE2 - E4)1 + 

sin 28 -g 5 (E2 + h3) - E g (1 + hg) + E” (1 - h)3l -t 
1 

2b sin 8 
[ 

- $- hc (h2 f 6”) + g E” (A - 1) + 

52 (2h - 3h’ + A” +- hE” - z”) 1 + 2bcos II - gE2 (A2 + E') + 
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The system (3.4) is nearly a Hamiltonian one. The values of the constants correspond- 

ing to the closed curves of the Hamiltonian system (p = 0) near which the limit cy- 

cles exist for small p_ # 0 , are given by the equation 

Y (I&) = S&-Q, (0, 0) A-’ (0)F (0, a)1 &do = 0 (3.5) 

where the double integral is computed over the area bounded by the closed curve of the 

conservative system embracing the state of equilibrium [12]. 
Thus, when p # 0 , the system (1.1) has periodic solutions near the closed generator 

curves H (0, a) = h of the degenerate conservative system when the equation (3.5) 

has the roots h = hi. The periodic solution is stable when Yh’ (hi) < 0, and a saddle 
one when Yh’ (hi) > 0. The stable limit cycle corresponds to self-oscillations of the 

rotor, and its emergence from the composite state of equilibrium corresponds to the “soft” 

mode of excitation of the self-oscillations [13]. We have 

*I 
‘J!(h) = - 2s ,[Q,A-‘F] (2 [h + G (B)])“de 

y’(h) = - 2 ~$~+l-V7] {2 [h + G (e)j]‘is-de 

where ‘pl and (p2 are the rooTi of the equation h + G (0) = 0. 
As an example, let us consider a synchronous motor with the same parameters as in 

Sect. 2. Figures 1, 2 and 3 depict the graphs of the function Y (h) versus the parameter 
f , and the correlation between the number n of the curves and the value of 5 is as 
follows : 

n=i 2 3 4 5 6 7 
e=o 0.01 0.012 0.0125 0.015 0.01625 0.02 
n=8 9 10 11 12 13 14 15 
5 = 0.7 0.74 0.77 0.795 0.7975 0.79875 0.799375 0.8 

When 5 C 0 , the system (1.1) has no limit cycles. At E > 0.012 a unique saddle-type 
limit cycle (Y,,’ (hi) > 0) appears. It decreases with increasing E and merges with the 
composite focus at E = 0.01625 . When E is increased further, the functionY (h)appears 

above the h-axis, and again we have nolimit 
cycles. At f > 0.77 a stable limit cycle (YY,, 

(hi) < 0) appears which decreases with increas- 
ing E and merges with the composite focusat 

5 =1 0.7975 (the manner in which the cycle 
appears is not investigated). At E > 0.7975 
the function Y (h) appears below the h-axis 

and again there are no limit cycles. Thus the 

stable limit cycle corresponding to the self- 
oscillations of the rotor exists at 0.77 < E < 

0.7975 and the mode of excitation of self- 

oscillations at E := 0.7975 is soft. 
L- _. ~~_~_~_ Let us now consider the synchronous motor 

in question and inspect the change in the sta- 
Fig. 1 bility of the equilibrium state corresponding 



598 N.A.Fufaev and R.A.Chesnokova 

to the synchronous mode, with respect to the parameter E, 
tern of equations 

0’ = s, s’ = T, - M 

using the second order sys- 

(3.6) 

as it was done in 1143, we obtain the following results. When E = 0, the state of equi- 

librium is stable, it becomes unstable when $ = 0.01635 and a unique unstable limit 

cycle shrinks to it (this unstable limit cycle corresponds to a saddle-type cycle for 

(1. l)), then at g = 0.7993 the state of equilibrium becomes again stable and a unique 
stable limit cycle shrinks to this state. Thus, investigating the emergence of the limit 

; 8 i- ~- 
!__ 

Y i 

y:jo-J 

s 

9 

? 
4 _~~~~~ 

1 

i- f/j 2 

10 
0 

-14 -L3 -I2 ..’ h 

Fig. 2 

Fig. 3 

cycles from the composite state of equilibrium and, in particular, the appearance of 
self-oscillations, on the basis of the complete system of equations of the dynamics of a 
synchronous motor yields, in the case of small s , a result which is near (in the above 
examples the results diverge by less than 1%) to that obtained by considering the second 
order system of equations (3.6). This confirms once again that for small s the dyna- 
mics of a synchronous motor (in particular the swinging of the rotor) can be fully des- 
cribed by a system of second order differential equations. 
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A variational equation is used for deriving a closed system of equations for defin- 
ing the behavior of a viscous compressible multiconstituent fluid [l& The deter- 
mining parameters comprise besides density, entropy, and mass concentration of 
constituents, also the polarization and magnetization vectors of individual consti- 

tuents. In conformity with the method developed in p - 41 the mixture is consid- 
ered to be a single continuous medium so that the presence of various constituents 
results in additional degrees of internal freedom in the definition of the considered 
medium. Chemical reactions between mixture constituents and phase transitions 
are assumed to be absent ( *). 

*) The simulation of a viscous multiconstituent fluid with allowance for diffusion and 
(continued on the next page) 


